Importance of Biomass Energy

The electricity generation capacity of renewable resources reached an estimated 240 gigawatts worldwide in 2007. Renewable resources represent 5 percent of global power capacity and 3.4 percent of global power generation. Renewable energy supplies 18 percent of the final energy consumption worldwide, counting traditional biomass, large hydropower, and “new” renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels).

Traditional biomass, primarily for cooking and heating, represents about 13 percent and is growing slowly or even declining in some regions as biomass is used more efficiently or replaced by more modern energy forms. Large hydropower represents 3 percent and is growing modestly, primarily in developing countries. New renewables represent 2.4 percent and are growing very rapidly in developed countries and in some developing countries. Clearly, each of these three forms of renewable energy is unique in its characteristics and trends.

Biomass fuel sources are readily available in rural and urban areas of all developing countries. Biomass-based industries can provide appreciable employment opportunities and promote biomass re-growth through sustainable land management practices. The negative aspects of traditional biomass utilization in developing countries can be mitigated by promotion of modern waste-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity. Biomass wastes encompass a wide array of materials derived from agricultural, agro-industrial, and timber residues, as well as municipal and industrial wastes.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions. Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

3 Comments

Leave a reply to Salman Zafar Cancel reply